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Abstract

Eye-gaze methods offer numerous advantages for studying cognitive processes in children with 

autism spectrum disorder (ASD), but data loss may threaten the validity and generalizability of 

results. Some eye-gaze systems may be more vulnerable to data loss than others, but to our 

knowledge this issue has not been empirically investigated. In the current study, we asked whether 

automatic eye tracking and manual gaze coding produce different rates of data loss or different 

results in a group of 51 toddlers with ASD. Data from both systems were gathered (from the same 

children) simultaneously, during the same experimental sessions. As predicted, manual gaze 

coding produced significantly less data loss than automatic eye tracking, as indicated by the 

number of usable trials and the proportion of looks to the images per trial. In addition, automatic 

eye tracking and manual gaze coding produced different patterns of results, suggesting that the 

eye-gaze system used to address a particular research question could alter a study’s findings and 

the scientific conclusions that follow. It is our hope that the information from this and future 

methodological studies will help researchers to select the eye-gaze measurement system that best 

fits their research questions and target population, as well as help consumers of autism research to 

interpret the findings from studies that utilize eye-gaze methods with children with ASD.
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Lay Summary:

The current study found that automatic eye tracking and manual gaze coding produced different 

rates of data loss and different overall patterns of results in young children with ASD. These 

findings show that the choice of eye-gaze system may impact the findings of a study—important 

information for both researchers and consumers of autism research.
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Introduction

Eye-gaze methods—including automatic eye tracking and manual coding of eye gaze—have 

been widely used to investigate real-time cognitive, linguistic, and attentional processes in 

infants and young children (Aslin, 2007, 2012; Fernald, Zangl, Portillo, & Marchman, 2008; 

Oakes, 2012). Eye-gaze methodology has also become increasingly popular in studies of 

children with autism spectrum disorder (ASD) in recent years (Chita-Tegmark, 

Arunachalam, Nelson, & Tager-Flusberg, 2015; Falck-Ytter, Bölte, & Gredebäck, 2013; 

Kaldy, Kraper, Carter, & Blaser, 2011; Potrzeba, Fein, & Naigles, 2015; Swensen, Kelley, 

Fein, & Naigles, 2007). Eye-gaze techniques offer advantages in autism research because 

they provide a window into complex cognitive processes simply by measuring participants’ 

gaze to visual stimuli on a screen. Furthermore, they have limited behavioral response 

demands, do not require social interaction, and are appropriate for participants with a wide 

range of ages, cognitive skills, and language abilities.

Given the growing popularity of eye-gaze methods in autism research, it is important to 

consider methodological issues that may impact the data from which we draw our inferences 

(Nyström, Andersson, Holmqvist, & van de Weijer, 2013; Oakes, 2012; Venker & Kover, 

2015; Wass, Forssman, & Leppänen, 2014; Wass, Smith, & Johnson, 2013). For example, 

eye-gaze methods are vulnerable to data loss—periods of time in which participants’ gaze is 

not (or appears not to be) directed to the stimuli of interest. Data loss is problematic because 

it can threaten the validity of dependent variables, diminish statistical power, limit the 

generalizability of findings, and produce inaccurate results (Wass et al., 2014). In addition, 

limiting data loss will increase the likelihood of attaining rigorous and reproducible results, 

as emphasized by the National Institutes of Health (Collins & Tabak, 2014). Though a 

certain amount of data loss is unavoidable, some eye-gaze systems may be more vulnerable 

to data loss than others, and different systems may even produce different patterns of results. 

In the current study, we investigated these issues by directly comparing data gathered from 

young children with ASD using two different eye-gaze systems—automatic eye tracking and 

manual gaze coding.

Studies of children with ASD typically measure gaze location using one of two systems: 

automatic eye tracking or manual coding of eye gaze from video. Both eye-gaze systems 

determine where children are looking, but they do so in different ways. Automatic eye 

trackers determine gaze location using a light source—usually near-infrared lights—to 

Venker et al. Page 2

Autism Res. Author manuscript; available in PMC 2021 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



create corneal reflections that are recorded by cameras within the eye tracker (Tobii 

Technology, Stockholm, Sweden). Gaze location is based on three pieces of information: 

corneal reflection, pupil position, and location of the participant’s head relative to the screen 

(Wass et al., 2014). Calibration is required to maximize the accuracy of gaze location 

measurements (Nyström et al., 2013), and processing algorithms are applied to the raw gaze 

coordinates to map gaze locations to areas of interest (AOIs) on the screen. Eye-tracking 

methods based on corneal reflection have been used to measure gaze location for decades 

(see Karatekin, 2007, for a historical review). Tobii Technology AB (2012) describes a test 

specification for validating the spatial measurements of eye-tracking devices. These tests 

quantify the accuracy and precision of gaze measurements by having viewers (and artificial 

eyes) fixate on known screen locations under various viewing conditions. Timing 

measurements can also be validated by comparing an eye tracker’s output to a video 

recording (e.g., Morgante, Zolfaghari, & Johnson, 2012).

Although some eye trackers involve head-mounted equipment, we focus here on remote eye 

trackers because they do not require physical contact with the equipment and therefore are 

more appropriate for young children with ASD (Falck-Ytter et al., 2013; Venker & Kover, 

2015). Remote eye trackers are robust to a certain degree of head movement, but they 

require some information about the location of the child’s head in 3D space. Thus, 

children’s heads must remain within a 3D ‘track box’ in order to determine gaze location. 

For example, the eye tracker used in the current study—the Tobii X2–60—allows for head 

movements of 50 cm (width) × 36 cm (height), with the participant positioned between 45 

and 90 cm from the eye tracker (Tobii Technology, Stockholm, Sweden).

Manual gaze-coding systems determine gaze location quite differently from automatic eye 

tracking. In manual gaze coding, human coders view a video of the child’s face that was 

recorded during the experiment (Fernald et al., 2008; Naigles & Tovar, 2012). Coders 

determine gaze location for each time frame, based on the visual angle of children’s eyes 

and the known location of AOIs on the screen. Coders must complete a comprehensive 

training process prior to coding independently (Fernald et al., 2008; Naigles & Tovar, 2012; 

Venker & Kover, 2015). As with other types of behavioral coding, coders also need to 

participate in periodic lab-wide reliability checks to prevent drift from the original training 

procedures over time (Yoder, Lloyd, & Symons, 2018). It is customary for studies using 

manual gaze coding to report inter-coder agreement for a subset of videos that were coded 

independently by two different coders (Fernald et al., 2008; Naigles & Tovar, 2012).

Because of its automated approach, eye tracking offers several advantages over manual gaze 

coding. It is objective, efficient, and has relatively high temporal and spatial resolution 

(Dalrymple, Manner, Harmelink, Teska, & Elison, 2018; Hessels, Andersson, Hooge, 

Nyström, & Kemner, 2015). Manual gaze coding, on the other hand, is subjective, requires 

extensive reliability training, is labor intensive (e.g., about 1 hr. for a 5-minute video), and 

has more limited spatial and temporal resolution (Aslin & McMurray, 2004; Wass et al., 

2013). As a result of its increased temporal and spatial precision, automatic eye tracking is 

capable of capturing certain dependent variables that manual gaze coding cannot (e.g., pupil 

size or discrete fixations within an AOI), opening up exciting new areas of inquiry (Blaser, 

Eglington, Carter, & Kaldy, 2014; Oakes, 2012; Ozkan, 2018). Thus, in some studies, 
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automatic eye tracking may be required to capture the dependent variables to answer a 

particular research question. In other studies, however, either automatic eye tracking or 

manual gaze coding would be capable of capturing the dependent variables of interest.

One experimental design that can be used with either automatic eye tracking or manual gaze 

coding is a ‘2-large-AOI’ design, in which visual stimuli (e.g., objects, faces) are presented 

simultaneously on the left and right sides of the screen (Fernald et al., 2008; Tek, Jaffery, 

Fein, & Naigles, 2008; Unruh et al., 2016). Because of its flexibility, the 2-large-AOI design 

has been used to study constructs as diverse as memory (Oakes, Kovack-lesh, & Horst, 

2010), spoken language comprehension (Brock, Norbury, Einav, & Nation, 2008; Goodwin, 

Fein, & Naigles, 2012), visual preferences (Pierce, Conant, Hazin, Stoner, & Desmond, 

2011; Pierce et al., 2016), and social orienting (Unruh et al., 2016). In this type of study, 

gaze location during each moment in time is typically categorized as directed to the left AOI, 

the right AOI, or neither (e.g., between images, away from the screen). From this 

information, researchers can derive numerous dependent variables, including relative looks 

to each AOI, time to shift between AOIs, and length and location of longest look. Though 

the 2-large-AOI design differentiates two relatively broad AOIs, as opposed to discrete 

fixations within a given AOI, it is possible for either system to produce inaccurate results. In 

manual gaze coding, for example, a human coder could judge a child to be looking at an 

image AOI, when in fact the child is looking slightly outside the boundaries of the AOI (e.g., 

off screen or at a non-AOI part of the screen). The same type of error could occur in 

automatic eye tracking when internal processing algorithms estimate gaze location 

inaccurately (Dalrymple et al., 2018; Niehorster, Cornelissen, Holmqvist, Hooge, & Hessels, 

2018). Because both systems are capable of reporting gaze location inaccurately, we do not 

consider inaccuracy to be a disadvantage unique to either system. We return to this issue in 

the Discussion.

Despite the clear benefits of automatic eye tracking, manual gaze coding may offer at least 

one substantive methodological advantage over automatic eye tracking: lower rates of data 

loss. Because manual gaze coding involves judging gaze location from video of children’s 

faces, it is relatively flexible: coders can determine gaze location as long as children’s eyes 

are clearly visible on the video. Automatic eye tracking, on the other hand, requires multiple 

pieces of information to determine gaze location. If any piece of information is missing, the 

eye tracker will be unable to report gaze location, resulting in data loss—even if the child’s 

gaze was directed toward one of the AOIs. The eye tracker may also need time to ‘recover’ 

before it regains the track after the eyes have moved off-screen and then back on-screen 

again (Oakes, 2010). Thus, automatic eye tracking may be especially affected by behaviors 

such as fidgeting, excessive head movement, watery eyes, and changes in the position of the 

child’s head (Hessels, Cornelissen, Kemner, & Hooge, 2015; Niehorster et al., 2018; Wass et 

al., 2014). Considering the impact of such behaviors on data quality is especially important 

in studies of children with ASD, where behaviors such as squinting, body rocking, head 

tilting, and peering out of the corner of the eye are likely to occur.

The goal of the current study was to determine whether automatic eye tracking and manual 

gaze coding systems produced different rates of data loss or different overall results. Young 

children with ASD participated in a screen-based semantic processing task that contained 
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two conditions: Target Present and Target Absent. Target Present trials presented two images 

(e.g., hat, bowl) and named one of them (e.g., Look at the hat!). Target Absent trials 

presented two images (e.g., hat, bowl) and named an item that was semantically related to 

one of the objects (e.g., Look at the pants!). During a given experimental session, children’s 

eye movements were simultaneously recorded both by an eye tracker and by a video camera 

for later offline coding. Prior to conducting the analyses, we processed and cleaned the data 

from each system, following standard procedures. In this way, we only examined trials that 

would typically be included in published analyses, thereby maximizing the relevance of the 

results.

Our first research question was: Do automatic eye tracking and manual gaze coding produce 

different rates of data loss, as indicated by the number of trials contributed per child or by 

the amount of looking time to the images per trial? Based on the inherent vulnerability of 

eye tracking to data loss, we predicted that automatic eye tracking would produce 

significantly more data loss than manual gaze coding across both metrics. Our second 

research question was: Do automatic eye tracking and manual gaze coding produce different 

patterns of results? To address this question, we conducted a growth curve analysis modeling 

looks to the target images over time and tested the impact of eye-gaze system (eye tracking 

vs. manual gaze coding) on children’s performance. Though the lack of empirical data in 

this area prevented us from making specific predictions, we were particularly interested in 

whether the analyses revealed any significant interactions between eye-gaze system and 

condition, as such a finding would indicate a difference, by system, in the relationship 

between the two conditions. We also conducted post hoc analyses of the data from each 

system separately, to determine how the overall findings may have differed if we had only 

gathered data from a single system.

Method

Participants

Participants were part of a broader research project investigating early lexical processing. 

The project was approved by the university institutional review board, and parents provided 

written informed consent for their child’s participation. Children completed a two-day 

evaluation that included a battery of developmental assessments and parent questionnaires, 

as well as several experimental eye-gaze tasks. The current study focused on one eye-gaze 

task that was administered on both days. This task is described in more detail below; results 

from the other tasks will be reported elsewhere.

Research visits were conducted by an interdisciplinary team that included a licensed 

psychologist and speech-language pathologist with expertise in autism diagnostics. Each 

child received a DSM-V diagnosis of ASD (American Psychiatric Association, 2013), based 

on results of the Autism Diagnostic Interview-Revised (Rutter, LeCouteur, & Lord, 2003), 

the Autism Diagnostic Observation Schedule, Second Edition (ADOS-2; Lord et al., 2012), 

and clinical expertise. Based on their age and language level, children received the Toddler 

Module (no words/younger n = 11; some words/older n = 8), Module 1 (no words n = 15; 

some words n = 14), or Module 2 (younger than 5 n = 3). Two subscales of the Mullen 
Scales of Early Learning (Mullen, 1995) were administered: Visual Reception and Fine 
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Motor. Based on previous work (Bishop, Guthrie, Coffing, & Lord, 2011), age equivalents 

from these two subscales were averaged, divided by chronological age, and multiplied by 

100 to derive a nonverbal Ratio IQ score for each child (mean of 100, SD of 15). The 

Preschool Language Scale, 5th Edition (PLS-5; Zimmerman, Steiner, & Pond, 2011) was 

administered to assess receptive language (Auditory Comprehension scale) and expressive 

language (Expressive Communication scale). The PLS-5 yields standard scores for both 

receptive and expressive language (mean of 100, SD of 15).

Participants were 51 children with ASD who contributed usable data (see “Eye-Gaze Data 

Processing”) from both the automatic eye-tracking and manual gaze coding systems (see 

Table 1 for participant characteristics). Forty children were male and 11 were female. Forty-

seven children were reported by their parent or caregiver to be White, and four children were 

reported to be more than one race. Five children were reported to be Hispanic or Latino and 

46 children were reported not to be Hispanic or Latino. ADOS-2 comparison scores 

(Gotham, Pickles, & Lord, 2009) provided a measure of autism severity. The mean score 

was 8, indicating that on average children demonstrated a high level of autism-related 

symptoms. Forty-eight of the 51 participants displayed clinical language delays based on 

PLS-5 total scores at least −1.25 SD below the mean. Nonverbal ratio IQ scores were below 

70 for 61% of the sample (31/50; an IQ score could not be computed for one child).

Semantic Processing Task

Children completed two blocks of a looking-while-listening task designed to evaluate 

semantic representations of early-acquired words. Children sat on a parent or caregiver’s lap 

in front of a 55-inch television screen (see Figure 1). Parents were instructed not to talk to 

their child or direct their attention. Parents wore opaque sunglasses to prevent them from 

viewing the screen and inadvertently influencing their child’s performance. Audio was 

presented from a central speaker located below the screen. During an experimental session, 

children’s eye movements were simultaneously recorded both by a video camera (for later 

offline coding) and by an automatic eye tracker. The video camera was mounted below the 

screen and recorded video of the children’s faces at a rate of 30 frames per second during the 

experiment for later manual gaze coding. The eye tracker, a Tobii X2–60 (Tobii Technology, 

Stockholm, Sweden), was placed on the end of a 75 cm extendable arm below the screen and 

recorded gaze location automatically at a rate of 60 Hz. Participants were seated so that their 

eyes were approximately 60 cm from the eye tracker (the standard distance recommended 

for optimal tracking). Positioning the eye tracker in this way—between the participant and 

the screen—allowed us to capture looks to the entire 55-inch screen while remaining within 

the 36 degrees of visual angle (from center) recommended for optimal tracking. Specifically, 

the visual angle was 24 degrees from center to the lower corners of the screen and 33.6 

degrees from center to the upper corners of the screen.

The experimental task was developed and administered using E-Prime 2.0 (version 

2.0.10.356) and the data were analyzed in RStudio (vers. 1.1.456; R vers. 3.5.1; R Core 

Team, 2019). Prior to the task, children completed a 5-point Tobii infant calibration, which 

presented a shaking image of a chick with trilling sound. If calibration was poor (i.e., the 

green lines were not contained in the circles for at least 4 of the 5 points), the experimenter 
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re-ran the calibration. If the child failed calibration after multiple attempts, the task was run 

without the eye tracker for later manual coding. (In the current study, six children were 

unable to complete calibration. See Eye-Gaze Data Processing for more information.)

Target Present trials presented two images (e.g., hat, bowl) and named one of them (e.g., 

Look at the hat!). Target Absent trials presented two images (e.g., hat, bowl) with an 

auditory prompt naming an item that was semantically related to one of the objects (e.g., 

Look at the pants!). Trials lasted approximately 6.5 seconds. Analyses were conducted on 

the window of time from 300 to 2000ms after target noun onset. Filler trials of additional 

nouns were included to increase variability and maximize children’s attention to the task, but 

these trials were not analyzed. Children received two blocks of the experiment with different 

trial orders. Each block included eight Target Present and eight Target Absent trials, for a 

maximum of 16 trials per condition.

Eye-Gaze Data Processing

Eye movements were coded from video by trained research assistants (using iCoder, Version 

2.03) at a rate of 30 frames per second. The coders were unable to hear the audio, which 

prevented any bias toward coding looks to the named image. Each frame was assigned a 

code of ‘target’ or ‘distractor’ or a code of ‘shifting’ or ‘away’ for frames in which gaze was 

between images or off the screen (Fernald et al., 2008). Independent coding by two trained 

coders was completed for 20% of the full sample; frame agreement was 99% and shift 

agreement was 96%.

To allow direct comparison of the automatic eye-tracking dataset and manual coded dataset, 

we equated the sampling rates of each system to 30 Hz. This required down-sampling the 

automatic eye-tracking data, which was originally collected at a sampling rate of 60 Hz. To 

mirror the procedures used in manual coding, segments of missing data due to blinks were 

interpolated for periods of time up to 233 ms assuming the AOI (left or right) was the same 

at the beginning and end of the period of non-image time segments.

For the purposes of the current study, data loss included instances when a look to an image 

AOI was not recorded due to limitations of the eye-gaze system (‘technical’ data loss) as 

well as instances when a look to an AOI was not recorded because children’s gaze was 

actually directed outside the AOIs (‘true’ data loss). We use the term data loss to refer to 

both types of occurrences because they produce the same outcome: periods of time in which 

gaze location is not recorded as directed to an AOI, and thus contribute no data to the 

analyses. Because both eye-gaze systems treat looks away from the AOIs—true data loss—

similarly, any differences between automatic eye tracking and manual gaze coding are most 

likely due to technical data loss.

The full sample had initially included 70 children with ASD. Because this study compared 

eye tracking and manual gaze coding, children were excluded from the analyses if they 

failed to contribute usable data from both systems. We defined “usable data” for a given 

system as four or more trials per condition with at least 50% looking time to the images 

during the analysis window (300–2000 ms after noun onset).1 Eight children were excluded 

because they did not contribute gaze data from both sources on at least one day, leaving 62 
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participants. (Six of these eight children were excluded because they were unable to 

complete calibration, a topic we return to in the Discussion.) Next, we removed all trials in 

which children looked away from the images more than 50% of the time during the analysis 

window. Children were excluded if they did not have at least four trials remaining in both 

conditions for each Source. Six children had too few trials in the manual dataset. Eleven 

children had too few trials in the eye-tracking dataset. (Note that the 11 children who had 

too few trials in the eye-tracking dataset included the six children who had too few trials in 

the manual-coded dataset, plus five additional children.) To ensure a level playing field, it 

was critical that the analyses include only the children who had contributed data from both 

sources. Thus, the 11 children who had too few trials in either Source were removed, leaving 

51 participants who contributed data to the primary analyses.

Analysis Plan

Our first goal was to determine whether automatic eye tracking and manual gaze coding 

produced different rates of data loss. To address this question, we constructed two linear 

mixed effects models using the lme4 package (vers. 1.1–17; Bates, Machler, Bolker, & 

Walker, 2015). The dependent variable in the first model was the number of trials per child. 

The dependent variable in the second model was the proportion of frames on which children 

were fixating the target or distractor object out of the total number of frames during the 

analysis window (300–2000 ms after target word onset). Both models included Source as a 

fixed effect (contrast coded as −0.5 for manual gaze coding vs. 0.5 for automatic eye 

tracking). Random effects included a by-subject intercept and slope for Source.

To determine whether automatic eye tracking and manual gaze coding produced different 

results overall, we used mixed-effects growth curve analysis to quantify changes in the time 

course of children’s fixations to the target object during the critical window (Mirman, 2014). 

The dependent variable was the proportion of frames on which children fixated the target 

object out of the frames they fixated the target or distractor object for each time frame 

during the critical window 300 to 2000ms after the onset of the target noun. To 

accommodate the binary nature of the data (i.e., fixations to the target or distractor) and 

instances in which a child always fixated the target or the distractor object, we transformed 

this proportion to empirical log-odds. Our fixed effects included Condition (contrast coded 

as −0.5 for Target Present vs. 0.5 for Target Absent), Source (contrast-coded as −0.5 for 

manual gaze coding vs. 0.5 for automatic eye tracking), four orthogonal time terms 

(intercept, linear, quadratic, and cubic), and all the 2-way and 3-way interactions. Models 

were fit using Maximum Likelihood estimation. As recommended by Barr et al. (2013), 

random effects were permitted across participants for all factors and all interactions (i.e., a 

full random effects structure). The significance of t-scores was evaluated assuming a normal 

distribution (i.e., t-values > ± 1.96 were considered significant). This assumption is 

appropriate given the large number of participants and data points collected.

1We selected the 300–2000ms analysis window because it is similar to time windows used in previous work and because it contained 
the average rise and plateau of looks to target across conditions.
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Results

Our first research question asked whether automatic eye tracking and manual gaze coding 

produced different rates of data loss, as indicated by the number of usable trials per child 

and the proportion of looking time to the images per trial. Given our exclusionary criteria, 

this analysis involves a level playing field. First, participants who were missing too much 

data from one system were also excluded from the other system (e.g., the five participants 

who had excessive missing data only with automatic eye-tracking). That is, we compared the 

number of useable trials only for those participants with enough data to be included in the 

final sample. Second, we excluded trials with too much missing data (i.e., without fixations 

to either object for more than 50% of the frames). That is, we compared the proportion of 

looking times to images only on those trials on which children were attentive and tracked. 

We did not include Condition or its interaction with Source in these models. Although 

children’s accuracy may differ in each Condition, the amount of useable data should not. 

Moreover, including Condition and the interactions would have overfit the models (i.e., 

using 3 effects to fit 2 data points per participant). As illustrated by the means and standard 

deviations reported below, the amount of data loss per Conditions was highly similar for a 

given Source, confirming our assumption.

We first examined the mean number of trials contributed per child for each source (see 

Figure 2). In the manual coded dataset, participants contributed 12.41 trials in the Target 

Absent condition (SD = 3.48, range = 4 – 16) and 12.53 trials in the Target Present condition 

(SD = 3.58, range = 5 – 16). In the automatic eye tracking dataset, participants contributed 

10.49 trials in the Target Absent condition (SD = 3.78, range = 4 – 16) and 10.75 trials in the 

Target Present condition (SD = 3.80, range = 4 – 16). As predicted, children contributed 

significantly more trials in the manual coded dataset than in the automatic eye tracking 

dataset, t(50) = −4.85, p < .001.

We next examined the proportion of looking time to the images during the analysis window 

(300–2000ms after target onset; see Figure 3). In the manual coded dataset, children looked 

at the images 90.05% of the time in the Target Absent condition (SD = 4.70, range = 76.28 – 

98.56) and 91.22% of the time in the Target Present condition (SD = 5.05, range = 74.62 – 

97.70). In the automatic eye tracking dataset, children looked at the images 87.88% of the 

time in the Target Absent condition (SD = 6.15, range = 71.64 – 99.52) and 88.73% of the 

time in the Target Present condition (SD = 5.57, range = 71.70 – 97.53). Consistent with our 

predictions, the proportion of looking time to the images was significantly higher in the 

manual coded dataset than in the automatic eye tracking dataset, t(50) = −3.88, p < .001.

Our second research question asked whether automatic eye tracking and manual gaze coding 

produced different patterns of results. Visual examination of the data revealed overall 

similarities in mean looks to the target image across the two systems (see Figure 4). 

Children’s looks to the target increased over time, and the mean curves were higher (in an 

absolute sense) for the Target Present condition than for the Target Absent condition. Next, 

we statistically tested the effect of Source (automatic eye tracking versus manual gaze 

coding) in a growth curve analysis modeling looks to the target image over time. Full model 
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results are presented in Table 2. We will first discuss the model results across Sources and 

will then discuss the Source by Condition interactions.

Collapsing across Source and Condition, there was a significant effect of all time terms (p’s 

< .017). This indicates that children’s fixations to the target object were significantly greater 

than chance (intercept), increased from the beginning to the end of the window (linear time), 

reached a peak asymptote and then declined (quadratic), and were delayed in increasing 

from baseline (cubic). As expected, there was a significant effect of Condition on the 

intercept (p = .029) and quadratic time (p = .017), indicating that children looked at the 

target image more and had a steeper peak asymptote in accuracy in the Target Present 

condition than in the Target Absent condition, regardless of Source. Condition did not have a 

significant effect on linear time (p = .300) or cubic time (p = .545). There was also a 

significant effect of Source on the linear time term: across Conditions, the average slope of 

the increase in looks to Target over time was significantly smaller for the manual-coded data 

than the eye-tracking data (p = .027).2 Source did not have a significant effect on intercept 

(p = .149), quadratic time (p = .065), or cubic time (p = .648).

We were particularly interested in the presence of any significant Source by Condition 

interactions, which would indicate that the difference between the Target Absent and Target 

Present conditions was larger for one Source than for the other. There were no significant 

effects of the Condition by Source interaction on linear, quadratic, or cubic time (all ps 

> .099). However, there was a significant effect of the Condition by Source interaction on 

the intercept (p = .015), indicating that the size of the Condition effect (i.e., the difference in 

overall accuracy on Target Absent versus Target Present trials) was significantly different 

between the two Sources. In other words, although children looked significantly less at the 

target image in Target Absent than Target Present trials overall, the decrease in accuracy 

from Target Present to Target Absent trials was significantly larger for manual gaze coding 

than for automatic eye tracking. This pattern is evident Figure 4, where the gap between the 

red curve (Target Present) and the blue curve (Target Absent) is larger for manual gaze 

coding than for automatic eye tracking.

To complement the findings from the previous analyses, we conducted separate post hoc 

analyses for automatic eye tracking and manual gaze coding to determine what the results 

would have been if we had collected data from only a single system. The data processing 

and modeling approaches were identical to those used in the previous analyses, with two 

exceptions. First, children were not excluded if they failed to contribute adequate data for 

both systems. Instead, children were retained in the analyses for a given system if they 

contributed adequate data from that system alone, which resulted in a different sample size 

for each system. Second, Source was not entered into the models because each analysis 

included data from only one system.

The manual gaze coding dataset included 65 of the original 70 children. Full model results 

for manual gaze coding are presented in Table 3. As in the previous analyses, there was a 

2This difference may have been driven by the fact that children’s accuracy started lower (below chance), thereby allowing more room 
for growth of the linear time term.
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significant effect of Condition on the intercept (p = .012) and quadratic time (p = .012), 

indicating that children looked at the target image more and had a steeper peak asymptote in 

accuracy in the Target Present condition than in the Target Absent condition. The effect of 

Condition on linear time (p = .313) and cubic time (p = .818) remained non-significant.

The automatic eye tracking dataset included 53 of the original 70 children. Full model 

results for automatic eye tracking are presented in Table 4. Consistent with the previous 

analyses, there was a significant effect of Condition on quadratic time (p = .013) and no 

significant effect of Condition on linear time (p = .190) or cubic time (p = .482). In contrast 

to the previous analyses, however, there was not a significant effect of Condition on the 

intercept (p = .164), indicating no significant difference in the amount of time children spent 

looking at the target image in the Target Present and the Target Absent conditions. In sum, 

the overall findings for linear, quadratic, and cubic time for both systems were similar to the 

results in the previous analysis. However, Condition effects differed between the two 

systems; in this analysis, the effect of Condition was only significant for the manual gaze 

coding dataset.

Discussion

To our knowledge, the current study is the first to directly compare data from automatic eye 

tracking and manual gaze coding methods gathered simultaneously from the same children, 

during the same experimental sessions. As predicted, manual gaze coding produced 

significantly less data loss in young children with ASD than automatic eye tracking, as 

indicated by two different metrics: the number of usable trials and the proportion of looks to 

the images per trial. Anecdotal observations have suggested that manual gaze coding may be 

less vulnerable to data loss than automatic eye tracking, and the current empirical evidence 

supports these observations. This finding is important because limiting data loss increases 

the likelihood that the data on which we base our interpretations are valid and reliable. 

Maximizing validity and reliability is particularly important in studies of individual 

differences in children with ASD, which require accurate measurements at the level of 

individual participants. Thus, although eye tracking offers several clear advantages over 

manual gaze coding (e.g., automaticity, objectivity), manual gaze coding offers at least one 

advantage: lower rates of data loss in young children with ASD (Venker & Kover, 2015).

In addition to data loss, we directly compared the overall results from automatic eye tracking 

and manual gaze coding by entering the data from both systems into a single model. There 

were numerous similarities in findings across the two systems, suggesting that automatic eye 

tracking and manual gaze coding largely captured similar information. Regardless of system, 

children looked significantly more at the target image in the Target Present condition than in 

the Target Absent condition—an unsurprising finding, since the named object was visible 

only in the Target Present condition. Despite these similarities, results revealed one notable 

discrepancy between the two systems: the difference in overall accuracy between the two 

conditions was significantly larger for manual gaze coding than for automatic eye tracking. 

Though we had expected the two systems to differ in terms of data loss, we did not expect to 

find a change in the pattern of results. This finding did not appear to be attributable to 

differences in statistical power related to the numbers of participants, as both datasets 
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contained only the 51 participants who had contributed data from both systems. It is possible 

that having more trials per child and more data per trial in the manual gaze coded data 

decreased within-child variability and provided a more robust representation of children’s 

performance.

Given the discrepancy between the patterns of results emerging from the two systems, we 

next asked: What would the results have been, and how might the conclusions have differed, 

if we had only gathered data from a single system? After all, most research labs use either 

one system or the other—not both. Post hoc analyses (on separately cleaned datasets for 

each system) revealed that the results of the manual gaze coding analysis mirrored those in 

the previous analysis. Specifically, children looked significantly more at the target image in 

the Target Present condition than in the Target Absent condition (p = .012). In contrast, the 

results of the automatic eye tracking analysis indicated no significant difference (p = .164) in 

the amount of time children spent looking at the target image across the two conditions. 

Either of these findings—a significant difference between conditions, or a non-significant 

difference—may have important potential theoretical and clinical implications. Because the 

two systems yielded different conclusions, however, the implications of one set of results 

have the potential to be strikingly different from the implications of the other set of results. 

Thus, these findings suggest that the eye-gaze system used to address a particular scientific 

question could alter a study’s results and the scientific conclusions that follow. In addition, 

these results provide additional context for the previous finding that manual gaze coding 

yielded a larger effect size between conditions than automatic eye tracking—namely, that the 

manual gaze coding data may have been driving the results in the primary analysis.

The post hoc analyses also revealed meaningful information about differences in data loss at 

the level of individual children. Following separate data cleaning for each system, the 

manual gaze coding dataset included 65 (of the original 70) children, and the automatic eye 

tracking dataset included 53 children. Thus, in addition to more trial loss and less looking 

time overall, more children were excluded (in an absolute sense) from the automatic eye-

tracking dataset than the manual gaze coding dataset. Excluding participants is undesirable 

because it reduces statistical power and limits the generalizability of findings. Issues of 

generalizability are even more concerning when participants are excluded systematically, on 

the basis of child characteristics. In the current study, for example, the 17 children who were 

excluded from the automatic eye-tracking dataset (but included in the manual gaze coding 

dataset) had significantly higher autism severity (M = 9.18, SD = 1.07, range = 6 – 10) than 

the 53 children who were retained in the automatic eye-tracking dataset (M = 8.17, SD = 

1.67, range = 4 – 10; p = .006).3 Our study is not the first to find a link between autism 

severity and child-level exclusion in an eye-gaze study. For example, Shic and colleagues 

(2011) also found that toddlers with ASD who were excluded due to poor attention had 

significantly more severe autism symptoms than toddlers who were retained in the analyses. 

Given that children with high autism severity may have difficulties with language processing 

(Bavin et al., 2014; Goodwin et al., 2012; Potrzeba et al., 2015), it is critically important to 

consider how participant exclusion impacts study findings.

3The groups did not significantly differ in age, nonverbal IQ, or receptive or expressive language skills (all ps > .383).
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Though the current data cannot unambiguously answer this question, it is useful to consider 

why the manual gaze coding and automatic eye tracking systems yielded different results, 

both in the primary analysis of children with data from both systems and the post hoc 

analyses of each system alone. Because the separate post hoc analyses contained different 

numbers of children (65 children for manual coding and 53 for eye tracking), they may have 

been impacted by differences in statistical power. Also recall that the children excluded from 

the separate automatic eye tracking dataset had higher autism severity than those who were 

retained. Thus, differences in child characteristics may also have played a role in the post 

hoc analyses, since the manual gaze coding model represented a broader range of severity 

than the automatic eye-tracking model (Bavin et al., 2014; Shic et al., 2011). However, the 

primary analyses could not have been affected by differences in participant exclusion since 

they contained only the 51 children who contributed data from both systems.

One potential explanation for the discrepancy in both the primary and post hoc analyses is a 

difference in accuracy—in other words, whether a child was truly fixating a given image at a 

given moment in time. Although the current findings do not speak directly to accuracy, 

either system could have produced inaccurate results. Manual gaze coding has been 

described as being more vulnerable to inaccuracy than automatic eye tracking because it is 

based on human judgment (e.g., Wass et al., 2013). Indeed, human coders can certainly 

make incorrect decisions about gaze location. However, the fact that automatic eye tracking 

is based on light reflections and automated algorithms instead of human judgment does not 

mean it is always accurate. A growing number of studies have begun to identify concerns 

regarding the accuracy of automatic eye trackers, especially in populations that may 

demonstrate considerable head and body movement (Dalrymple et al., 2018; Hessels, 

Andersson, et al., 2015; Hessels, Cornelissen, et al., 2015; Niehorster et al., 2018; 

Schlegelmilch & Wertz, 2019).

Dalrymple and colleagues (2018) examined the accuracy of an automated Tobii eye tracker 

and found that data from toddlers with typical development had poorer accuracy and 

precision than data from school-aged children and adults. In fact, the mean accuracy for 

toddlers fell outside the accuracy range described in the eye-tracker manual. The accuracy of 

remote eye-tracking systems appears to be particularly compromised when participants 

adopt non-optimal poses, such as tilting their heads or rotating their heads to the left or right 

side (Hessels, Cornelissen, et al., 2015; Niehorster et al., 2018). This is concerning, given 

that individuals with ASD often examine visual stimuli while adopting non-standard head 

orientations, such as turning their heads and peering out of the corners of their eyes. High 

quality calibration increases accuracy, but it can be difficult to achieve (Aslin & McMurray, 

2004; Nyström et al., 2013; Schlegelmilch & Wertz, 2019; Tenenbaum, Amso, Abar, & 

Sheinkopf, 2014). Some children may be unable to complete calibration (Dalrymple et al., 

2018), and time spent on calibration (and re-calibration) decreases the likelihood that 

children will remain engaged in the remainder of the task (Aslin & McMurray, 2004). It can 

also be difficult to tell whether poor calibration occurs because of the measurement error of 

the system, or because a child did not actually fixate the intended target.

The current study had several limitations. Our findings were based on one eye-tracking 

system and one manual gaze coding system, and other systems may produce different results 
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(Hessels, Cornelissen, et al., 2015; Niehorster et al., 2018). We focused on one set of data 

cleaning criteria, which in our experience are representative of those commonly used in 

published research. However, changes in trial-level and child-level cleaning criteria could 

have different effects. In addition, it is important to note that the current findings are most 

relevant to studies in which both manual gaze coding and automatic eye tracking are a 

potentially viable option—likely those using a 2-large-AOI design. The question of 

disproportionate data loss across children with ASD and children with typical development 

is an additional question that warrants future investigation.

Conclusion

As recently as 15 years ago, the use of automatic eye tracking in infants and young children 

was rare (Aslin, 2007; Aslin & McMurray, 2004). Since that time, however, automatic eye 

tracking has become increasingly common in research labs studying young children, 

including those with neurodevelopmental disorders. Despite the clear methodological 

advantages of automatic eye tracking, manual gaze coding may limit rates of data loss in 

young children with ASD. Furthermore, the choice of eye-gaze system has the potential to 

impact statistical results and subsequent scientific conclusions. Given these findings, our 

research teams have continued to use manual gaze coding for studies in which the design 

and dependent variables allow for either type of system. It is our hope that the findings from 

the current study will allow autism researchers to make more informed decisions when 

selecting an eye-gaze system, whether either system would be appropriate. The information 

from this and future methodological studies will help researchers to select the eye-gaze 

measurement system that best fits their research questions and target population, as well as 

help consumers of autism research to interpret the findings from studies that utilize eye-gaze 

methods with children with ASD. In addition, these findings highlight the importance of 

continuing to develop more robust eye-gaze methods to maximize scientific progress in 

autism research.
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Figure 1. 
Visual depiction of the experimental setup. Children sat on their parent’s lap in the chair 

while viewing the task. The video camera was placed directly below the screen. The 

automatic eye tracker was placed on the end of the extendable arm to ensure appropriate 

placement.
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Figure 2. 
Mean number of usable trials per child, separated by source (Handcoded = manual gaze 

coding; Tobii = automatic eye tracking) and condition (Target Absent vs. Target Present). 

The dots represent means for individual children. The bars represent +/− one standard error 

above and below the mean.
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Figure 3. 
Mean proportion of time points during the analysis window (300–2000ms after noun onset) 

in which children were looking at the images, separated by source (Handcoded = manual 

gaze coding; Tobii = automatic eye tracking) and condition (Target Absent vs. Target 

Present). Dots represent the mean for each child. The bars represent +/− one standard error 

above and below the mean.
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Figure 4. 
Probability of looking to the target during the analysis window (300–2000ms after noun 

onset), separated by source (Handcoded = manual gaze coding; Tobii = automatic eye 

tracking) and condition (Target Absent vs. Target Present). Dots represent group means for 

raw data. Solid lines represent growth curve estimates of looking probability. Shaded bands 

reflect +/− one standard error around the mean.
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Table 1

Participant Characteristics

Mean (SD) Range

Age in months 30.80 (3.35)
24 – 36

Nonverbal Ratio IQ (MSEL) 65.74 (15.99)
31 – 102

ASD Symptom Severity (ADOS-2) 8.10 (1.66)
4 – 10

Auditory Comprehension (PLS-5) 59.25 (12.12)
50 – 98

Expressive Communication (PLS-5) 73.14 (10.45)
50 – 100

Total Language (PLS-5) 64.02 (10.40)
50 – 95

Note. MSEL = Mullen Scales of Early Learning; ASD = Autism Spectrum Disorder; ADOS-2 = Autism Diagnostic Observation Schedule, Second 
Edition; PLS-5 = Preschool Language Scales, Fifth Edition. Standard scores were used for the ADOS-2 and PLS-5.

Autism Res. Author manuscript; available in PMC 2021 February 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Venker et al. Page 23

Table 2.

Model Results for Both Systems

Estimate SE t value p value

(Intercept) 0.210 0.052 4.052 < .001*

ot1 0.894 0.239 3.744 < .001*

ot2 −0.535 0.180 −2.972 0.003*

ot3 −0.187 0.079 −2.386 0.017*

Condition −0.234 0.107 −2.190 0.029*

Source −0.037 0.026 −1.443 0.149

ot1:Condition −0.471 0.454 −1.037 0.300

ot2:Condition 0.850 0.355 2.393 0.017*

ot3:Condition 0.129 0.213 0.605 0.545

ot1:Source 0.268 0.121 2.214 0.027*

ot2:Source 0.150 0.081 1.846 0.065

ot3:Source −0.042 0.092 −0.457 0.648

Condition:Source 0.100 0.041 2.423 0.015*

ot1:Condition:Source −0.207 0.299 −0.694 0.488

ot2:Condition:Source 0.037 0.195 0.188 0.851

ot3:Condition:Source 0.249 0.151 1.653 0.099

Note. The independent variable was Time and the dependent variable was the log odds of looking to the target image. ot1 = linear time. ot2 = 
quadratic time. ot3 = cubic time. Condition (Target Present vs. Target Absent) and Source (manual gaze coding vs. automatic eye tracking) were 
contrast coded using −0.5 and 0.5. Thus, the overall Condition and Source results reflect average findings across both Conditions and/or Sources.

*
indicates significance at p < .05.
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Table 3

Model Results for Manual Gaze Coding

Estimate SE t value p value

(Intercept) 0.228 0.045 5.098 < .001*

ot1 0.652 0.211 3.089 .002*

ot2 −0.485 0.164 −2.952 .003*

ot3 −0.189 0.089 −2.130 .033*

Condition −0.241 0.961 −2.511 .012*

ot1:Condition −0.428 0.424 −1.010 .313

ot2:Condition 0.780 0.311 2.505 .012*

ot3:Condition −0.041 0.177 −0.231 .818

Note. The independent variable was Time and the dependent variable was the log odds of looking to the target image. ot1 = linear time. ot2 = 
quadratic time. ot3 = cubic time. Condition (Target Present vs. Target Absent) was contrast coded using −0.5 and 0.5.

*
indicates significance at p < .05.
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Table 4

Model Results for Automatic Eye Tracking

Estimate SE t value p value

(Intercept) 0.184 0.054 3.427 < .001*

ot1 0.952 0.264 3.608 < .001*

ot2 −0.485 0.178 −2.730 .006*

ot3 −0.171 0.922 −1.858 .063

Condition −0.153 0.110 −1.391 .164

ot1:Condition −0.669 0.510 −1.311 .190

ot2:Condition 0.938 0.378 2.479 .013*

ot3:Condition 0.171 0.244 0.703 .482

Note. The independent variable was Time and the dependent variable was the log odds of looking to the target image. ot1 = linear time. ot2 = 
quadratic time. ot3 = cubic time. Condition (Target Present vs. Target Absent) was contrast coded using −0.5 and 0.5.

*
indicates significance at p < .05.
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